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ON THE INFLUENCE OF INITIAL STRESSES ON THE VELOCITIES 
OF THE STONELEY WAVES* 

A. N. GUS' and A. P. ZHUK 

Wave propagation along a plane boundary separating compressible, previously deform- 
ed bodies with elastic potential of arbitrary form, is studied. The linearized 
theory of wave propagation in bodies with finite initial deformation is used. A 
case in which one of the bodies is a liquid, is studied. It is shown that in the 
case of the Murnaghan and harmonic type potentials the wave velocities depend line- 
arly on the initial stresses. In contrast with the case of an unbounded isotropic 
body /l/, here the character of the dependence is not influenced by the choice of 
the form of the potential. In the absence of the initial stresses the relations 
obtained coincide with the results of /2/. 

1. Formulation of the problem. We consider a problem of propagation of a surface 
wave along a plane boundary separating elastic prestressed half-spaces. We assume the half- 
spaces to be compressible and isotropic , with elastic potentials of arbitrary form. We shall 
use the Lagrangian (s,,z,,x,) -coordinate system coinciding , in the undeformed state, with 
the Cartesian coordinate system. We denote the quantities referring to the initial (deformed) 
state bp a zero superscript. We assume that the plane zt = 0 is the boundary separating the 
half-spaces. In this case the investigation of the surface waves reduces to the question of 
solving the plane problem of the linearized theory of elasticity in the Or,r,-plane 

Ul = u1 (zl, 22, t), Lie -= ue (I,, .rt, T), UQ = 0 (1.1) 

According to /3/, when the initial state is homogeneous 

llmD y- 6irn Cki - I) zi, hi = const (i, m = 1, 2, 3) Cl..?) 

the above problem of the linearized theory of elasticity reduces to that of solving a bound- 
ary value problem for the equation of motion, with boundary conditions in tennsofthe stresses 

(1.3) 

Here Lit denote the differential operators, Pi* are the components of the perturbations in 
the external load at 2, = const, and Xi are the extension coefficients along the principalaxes 
of the Green's deformation tensor. 

If the initial state of stress is determined by the expressions 

Qll 
+a E a2**o # 0, u23*O # 0, .hl = J.2, h, P 0 (1.4) 

then the general solution of the system of equations (1.3) can be written in terms of the 
function x as follows /3/: 

The expressions for determining the quantities aij and pm in terms of the elastic potent- 
ial and the equation for determining the function x , are given in /3/. 

In addition to the Lagrangian coordinate system we introduce, in the initial state, the 
SySteUl Zf = hiIi of coordinates, and will denote all quantities referring to the half-space 
4~0 by a prime. The displacement in each half-space as well as the normal and tangential 
surface load intensity perturbations at Q = 0 are given, respectively, by the formulas !1.51 
and (1.3) in which the passage to the variables zi has been carried out. 

The following conditions of continuity must hold at the boundary separating the half- 
spaces: 

u1 = u,‘, us = Us’, pi = PI,, pz = pts (1.6) 

Here pi = &IL~)-~P~* and pi’ = (A,‘h,‘)-‘Pi*’ are the surface load intensity perturbations at 
,'* = _ 0, measured over unit surface area in the initial state. 

2. Dispersion relations. We shall obtain dispersion relations describing the 
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Stoneleywaves at the boundary separating the elastic half-spaces and at the boundary separat- 
ing a liquid from an elastic half-space. We assume the alastic half-spaces to be prrviously 

deformed. 

Waves at the bound2ry separating elastic half-spaces. We consider the Cese 
w&n the initial state of stress satFsfies the relations 

%L 
w a @2z te - 

- % w* s i&f= + 0, @a#** + 4 pig**** * 0 f2*1) 

We choose the function x far the half-space 2.2 < Q Sn the form of a surface wave propagat- 

ing in the positive direotion ofthe 00, -axis 

x = cp (4) exp Iiq (z, - Ct)l (2.2) 

Bere q is the wave n&r anb C is the phase velocity cE the wave. 
Taking A&u accmzrkt 11.5) ad C2.2f, we obtain frorc fL3f the fclkxd?g expression for 

the unknown function rp (4): 

q~ = At*our:j + Be@;&, al = (1 - C*/C~I1*)'+ of = (2 - C*/C,lpr)r/t (2.3) 

Here A and 19 are the integration constants, CQ, and Cli* denote the corresponding veloc- 
ities of the ZongitudinaY. andtransversewaves moving in the prestressed body along the O%- 
axis ili. Cunsequent~y the expressions far tie dispbbzments kmxme 

% =A-q"- (.&Se*** -f- 23ffp'e="*) exp lip (Z$ - CT)l, u, = - iKq* (Aas,@~z* f Bfc@Q*~) exp fip (zl - &)I 12.41 

$ = P (cl,,z - C,,& 
For t.h@ half-space 8% > 0 the function x' and the displacements u!' (i -= 1, 2) are given 

by the fwmulas obtained from (2.2)- (2,4) where A,R,at, at,C~~l,Cdie,I)tii has been replaced 
by A’, B’, al’, . . _ t li’ and cxp (qc& by exp (- qEi*z&* It3 addition, a plus Sign must be' used in 
the expression for faz'. Taking into account, for the half-space %<Q t Me expressbns for 
the ~SphWnients (2.4) as well as the equations of stgta /3/ 

where the rmltiplying factor exp fiq (i, - &)I has been osxi.tte& 
For the half-space z, > 0 the quantrties pi’ fi = 1,251 can be obtained frm the %33m3las 

identical t0 (2.6) in which &,. h,, alp, FL,, Cli12, i&k’, p have been replaced by AI*, ha', q,', . . _ ~ 
p'. Here t;fre minus sign muat be used in the expression for p,'. 

Using the boundary conditions (1.6) and taking into account the expressions (2.4) and 
(2.61, we mxive at the fallowing characteristic equation describing the propagation of the 
Stoneley waves through a prestressed mad&urn: 

In the &sence of the initial stre&ses the characteristic equation (2.7) assumes its 
classical farm 14.I. 
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which describes the propagation of the Stoneley waves along the boundary between the fluid 
and prestressed half-space. 

*or - *or =U 
The classical case /4/ is obtained by putting in (2.9) 

czz 
cl1 *'I = 

- asa 

3. Examples. We shall consider some 
the elastic potentials. 

examples for the bodies with particular formsof 

Waves at the boundary separating elastic half-spaces, Consider the case when 
the initial state of stress is described by the expressions 

8;; =c$ -2 ti; = s;;' = sf =O, 5; = p’, ?bl=h=&= i (3.1) 

In this case we write the equation (2.7) in the form 

v' t(P I P' - m)' - (B&' + m&) (B#pl'P' + m&)1 + 40 M/P' - m&x (3.2) 

(BIss:P' - mS&, - pip’ + m) + 4 WP - pT)‘X Kw, - 4) (BIBS - 1) = 0 

PI = (i - v/d)"*, fi2 = (i - drf’*, fis = (i - u/g)“‘, (3, = (1 - v/#*, I) = (c/s')*. g = (c;, /cry 

d = (C&a% r = (c,/ca’)‘, J = (c,/c,‘)” , c1~ = (J. + 3,~)/~, ea* w cr/p, czC* = $jp', m = (G~J.~,~-' 

(3.3) 

where 1,): and p,p' are the Lam& constants. 

1'. Using the framework of the theory of finite initial deformations, we consider the 

case for a half-space with harmonic-type potential /5/ 

@ = 'Qs1*a + PI", SC = (J.1 - 1) + (A* - i) + (As - i). S*' =(;c, - 1)' + (A* - I)' f (5, - 1)s (3.4) 

Taking into account /6/ we obtain, from (3.3) and (3.4), 

n = 0. 1,' = 1, rz # 0, A; = (I(31 - 4) f R (t - 2) (61 - 8)l"' - 3t + 4)/In (I - 2)1 (3.5) 

g = II' - 'I, (L - 2) A,'12 (Al' - 1) + ($' - i)l, n = PO/P'. d = A; (2 + (f - 2) [&' - 2 (A,' - I) - (4' - i)]], t = (q’lr;)~ 

Solving (3.2) numerically we find, that the dependence of n=(C - C&Coon n has linear charac- 
ter n=kn(Co is the velocity of the Stoneley wave in a stress-free body). For the materials 
combination of the alloy AMG-6 
45G17IU3 @'= 7.54.10s kg/m3, 

(p = 2.63.100 kg/m3, A = 49.6 -10' Pa , p = 24.8.1(r Pa) is steel 
1: = 78.0.10B Pa, p' = 63.8./V Pa) k = -0.088 (-O,S.lO-*< n < O.S.iO-*) and for 

the combination of the alloy AM+6 is steel 09G2S(p' = i.795.1W kg/m3 , I.’ = %).75.10* Pa, p’ = i5.95. 

10’ Pa\ k = - 0.0714 (-3.5.10-3 < n < 3.5.tO-z). 

20 Consider the 
Murnaghd potential /7/ 

case when the materials occupying the half-spaces are described by the 

a0 = ‘/&A,“’ + PA,” + 1!3aA,03 - bA,‘A,’ + ‘i3cA3= (3.6) 

Here it, b and c are the third order elastic constants and Ai(i= i,2,3) are the algebraic in- 
variants of the Green's deformation tensor:, We shall limit ourselves to the linear approxima- 
tion /l/. In this case we assume that 0' 0; = 033 = pa and determine the quantities (3.3) using 
the formulas 

g = &" + (P",-' (b’ f ‘/,c’) (A,‘* - i) A,” + ‘I, ($)-lb’ (s’* - 1) A,” (3.7) 

d = (I.’ + 2~') (cc')-'&" + [(Zo' + 46’ + c’) (AI’* - 1) + (a’ + b’)x 

(h” - 1)] qr (p’)-‘, K,, = 31' + 2~'. h,'* = t - Kp-'l'n, A,'* = i + 2Ko-' (A' + p') n 

The results of the computations for the same materials combinations as used in example 1 
0 

show that n depends linearly on n. For the combination of the alloy AMG-6 (a = 30.2~1010 Pa, 

b = -4.8.t010 Pa, c = -_28.6.ip pa) is steel 45G17IU3 (a' = 60.i.10Lp Pa ,b’ = -2l.i.lOw Pa. c' = -33.5.11V0 
Pa)k = -0.185 and for the ccmbination alloy AMG-6 is steel 09G2S (a' = -25.5.10" Pa, b' = -20.6 *1O"Pa, 

C' = -46.45.1@" Pa) k = -0.01. 

Waves at the boundary between a liquid and an elastic half-space. We con- 
sider the case when the initial state of stress is described by the expressions (3.1). In 
this case the characteristic equation (2.9) assumes the form 

(2 - r/g)*& :- Pr.*&/(p'nlg') - sp,p,!3, = (' (3.8) 

3O. Using the framework of the theory of finite initial deformations, we consider a 
problem for an elastic half-space with a harmonic-type potential. The quantities appearing 

in (3.8) are given by the relations (3.5). Equation (3.8) was solved numerically using the 
following parameters /a/: I = 2.ss7. r = 1.176, p;p' = 0.5. The analysis of the solution shows the 

linear dependence of n on II k = --0.12(--0.002 Q n < 0.002). 
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The results obtained make it possible to establish the character of the influence of the 
initial stresses on the Stoneley waves propagating along the boundary separating two elastic 
bodies or a liquid and an elastic body. The influence consists of the fact that the velocity 
of the Stoneley wave increases (decreases) if one of the elastic spaces is comparessed (stret- 
ched) in the direction perpendicular to the direction of the wave propagation. The wave vel- 
ocity depends on the initial stresses in a linear manner. 

Analysing the computational results we find, that in contrast to the case of waves in an 
unbounded isotropic body, the choice of the form of the elastic potential does not influence 
the character of the dependence of the velocity of the Stoneley waves on the initial stresses. 
In both cases the velocity increases under compression and decreases under tension. 

In conclusion we note that certain results concerning waves at the boundary separating 
prestressed bodies are given in /9,10/. 
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