PMM U.S.S.R.,Vol.44,pp.782-785 0021-8928/81/6 0782 $7.5¢
Copyright Pergamon Press Ltd.1981.Printed in U.K.
UDC 539.3:534,1

ON THE INFLUENCE OF INITIAL STRESSES ON THE VELOCITIES
OF THE STONELEY WAVES

A. N. GUZ' and A. P. ZHUK

Wave propagation along a plane boundary separating compressible, previously deform-

ed bodies with elastic potential of arbitrary form, is studied. The linearized
theory of wave propaqatlon in bodies with finite initial deformation is used. A
case in which one of the bodies is a liguid, is studied. It is shown that in the
case of the Murnaghan and harmonic type potentials the wave velocities depend line-
arly on the initial stresses. In contrast with the case of an unbounded isotropic
body /1/, here the character of the dependence is not influenced by the choice of
the form of the potential. In the absence of the initial stresses the relations
obtained coincide with the results of /2/.

1. Formulation of the problem. We consider a problem of propagation of a surface
wave along a plane boundary separating elastic prestressed half-~spaces. We assume the half-
spaces to be compressible and isotropic, with elastic potentials of arbitrary form Wwe shall
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use the Lagrangian (x4, Zq, Tg) -coordinate system coinc:.dmg, in the undeformed state, with
the Cartesian coordinate system. We denote the quantities referring to the initial (deformed)

state h(y a zaryo ="perscr1n" Wa assume that the "lane Ty = Q is the bc‘;mda;.j gcyq&ut‘_“‘, the

half-spaces. In this case the investigation of the surface waves reduces to the question of
solving the plane problem of the linearized theory of elasticity in the QOz,z,-plane
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Uy = Uy (Ty, Tay T), Up = Uy (T}, Ty, T), Uy =1 (1.1)
According to /3/, when the initial state is homogeneous
Um® = 8im (hi — 1) x5y A; == comst (i, m = 1,2, 3) (1.2)
the above problem of the linearized theory of elasticity reduces to that of solving a bound-
ary valiue problem for the equation of motion, with boundary conditions in terms of the stresses

Liu; =0 (i,j =1,2), za==const, 0a*hs -~ 07— 9uz

. _.s Ou
o2 01’ == P'Z*v Un*h - 02.. —t Pl (1.3)

aur. Xy
Here L,;; denote the differential operators, P;* are the components of the perturbations in
the external load at =z, = const, and A; are the extension coefficients along the principal axes
of the Green's deformation tensor.

If the initial state of stress is determined by the expressions

o ¥0 o ¥ 2 ) g ¥ =t () A, = A, A. =0 (1.4)
¥ Em 0™ R, oY FO, A=A, ApFEU (1.4}

then the general sclution of the system of equations (l1.3) can be written in terms of the
function y as follows /3/:

% o 2 2 2 1.5
Uy == {122 [(Plﬁ + 611"22) 5?.“;3— + (ai" + 022}-2 ) drgt ]—p%;}x B Uz =2 e x‘}\z (qu e alg)-‘%';;g— ( )
The expressions for determining the quantities a;; and p;, in terms of the elastic potent-
ial and the equation for determining the function 1y , are given in /3/.
In addition to the Lagrangian coordinate system we introduce, in the initial state, the
system z; = Ar;  of coordinates, and will denote all quantities referring to the half-space
z,<< 0 by a prime. The displacement in each half-space as well as the normal and tangential
surface load intensity perturbations at 3z, =0 are given, respectively, by the formulas (1.5)
and (1.3) in which the passage to the variables z; has been carried out.
The following conditions of continuity must hold at the boundary separating the half-
spaces:
g =, Ug =Us's py=ps P2=py (1.6)

Zs O ’ measured over unit surface area in the initial state.

Here = (MA)"'P;* and p,” = (A,’A;)"'P;** are the surface load intensity perturbations at

2. Dispersion relations. We shall obtain dispersion relations  describing the
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Stoneley waves at the boundary separating the elastic half-spaces and at the boundary separat-
ing a liquid from an elastic half-space, We assume the elastic half-spaces to be praviously
deformed.

Waves at the boundary separating elastic half-spaces., We consider the case
when the initial state of stress satisfies the relations

Op*" = 0™ = 0,% = 05" F 0, 0y* 50, 05, %0 2.1
We choose the function ¥ for the half-space 2, <0 in the form of a surface wave propagat-
ing in the positive diregtion of the O -axis
1 = @ (2,) exp lig (z, — 1)) {2.2)
Here g is the wave number and € is the phase velocity of the wave.

Taking intc account {1.35} and {2.2), we cbtain from (1.3} the following expression for
the unknown function ¢ {8):

@ = Aewis o Betwss, oy = (1 — CYCN', g o= (1 — CYC,ypt)e (2.3)

Here A4 and R are the integration constants, Cj; and (., denote the corresponding veloc-
ities of the longitudinal and transverse waves moving in the prestressed body along the Oz -
axis /1/. Conseguently the expressions for the displacements become

uy = K g {dev™% L B, exp lig (z; — €, = — iKg? (Ao,e9%: + Boeen) exp fig (5, — )1 (2.4

K == 0 (Cyy* — Cypp®)

For the half-space 2z, >> 0 the function y and the displacements u;’ (i = 1, 2) are given
by the formulas obtained from (2.2)— (2,4) where A, R, u,, a, Ciys Cyyer p» A has been replaced
by 4,8, a, ..., K and exp {gz;z,) by exp {— gu;'%,}. In addition, a plus sign must be used in
the expression for =n,'. Taking intoc account, for the halfe-space % <0 . the expressions for
the displacements {2.4) as well as the equations of state /3/

Bu. By . &
Ogy™ = Ryhapirs (-0—;:- + ‘“gi‘) v On*= Glzhﬁ*g;f- + @eshs? -3% (2.5)

we obtain, for the surface load intensity perturbations at the boundary z, = &, the following
expressions in accordance with {1.3}:

= K& (") HpCana® + Mokt ad + {pCp%? + taehy*) 0, 8] 2.6
P2 = K@ (%) Uaphy® = pCisa?0,%) 4 4 {agehy® — pCiyy?) wy?B]

where the multiplying factor explig{z; — (1)} has been omitted.

For the half-space 2, >0 the quantaties p; {i = 1, 2) can be cbtained from the furmulas
identical to (2.6} in which Ay, Ry, @i, Byes Cases Oy X, p have been replaced by A, Ay, 6y, . . .
p’. Here the minus sign must be used in the expression for p,’.

Using the boundary conditions (1.6) and taking into account the expressions (2.4) and
(2.6), we arrive at the following chara¢teristic equation describing the propagation of the
Stoneley waves through a prestressed medium:

L3

CHllp — p'm)® — {py” + p'aym) (p=” + plagm)] + 2 SC {pay'ey” — peyaem — o + p'm) + STy — (2.7
Dia'ay — 1) =0, m = M2, %), 8 = pCyg® + Paghy® — m (P'Cora™ + fye'A,"%)
In the absence of the initial stresses the characteristic equation (2.7) assumes its
¢lassical form /4/.

Waves at the boundary between a liquid and an elastic half-space. Let us
consider the case when one of the half-spaces, e.g. 5 < 0, is a liguid {Coe = 0, €1y = &
@y = oo and ¢; is the speed of sound in the liquid), and the initial state of stress is des—
cribed by

0% m Opp*® = Ogs* = 0, 0, = 0 52 0, 05,* 5 0 (2.8)
In this case the charactexistic eguation (2.7) becomes

8- mp'CH gy L mpp'ey €4 — Stmaa, =0, m= (%7, S=—m(2 TG WL G5 * A8 2.3



784 A. N. Guz' and A. P. Zhuk

which describes the propagation of the Stoneley waves along the boundary between the fluid
anc}lcprestrezsed half-space. The classical case /4/ is obtained by putting in {2.9) o,* =
0™ = 053*” = 0.

3. Examples. We shall consider some examples for the bodies with particular forms of
the elastic potentials.

Waves at the boundary separating elastic half-spaces. Consider the case when
the initial state of stress is described by the expressions

6:1=5:i=d:3=3:1 =5;’ =0, G;;=p°, A== hgmmhg=1 ) (3.1)

In this case we write the equation (2.7) in the form

B lp/p" —m? — (Bipip” + mPy) (Bsp/p” + mBy)l + 4o (sp/p” — mg) X (3.2)
(BiBap/p” — mBeBy — 0/0" + m) + 4 (3p/p” — mg)t (ByBy — 1) (B1B3 — 1) = 0

Br=( — o/d)" By = (1 — o/1)'/, By = (1 — olg)'/t, By =(1 — 0/e)'/", o0 = (Cley®, g = (Cppq Jex')? (3.3)
d = (Ciyla"?, r= (a/e) s = (ca/ey))?, o= (A + 20, o = e, o = Wi, m= (/M)
where A, N and p,p’ are the Lamé constants.

1°, Using the framework of the theory of finite initial deformations, we consider the
case for a half-space with harmonic-type potential /5/

Q° = YAS + pS, SO =(h — )+ (g — 1)+ (hg — 1), 8" =(hy — 1) + Ay — D+ (hy — 1) (3.4)
Taking into account /6/ we obtain, from (3.3) and (3.4),

n=0,A"=1, ns0, A = {[(3t —~4) + n(t—2) (6c — 8] — 3t + 4fla (t — 2)} (3.5)

g=A" =t =M R2A =)+ Ry’ =D n=pW, d=2 {2+ (-2 -2} —1) — X — DI} ¢ = (/)2

Solving (3.2) numerically we find, that the dependence of n = (C — Co)/Co on n has linear charac-
ter 7n=+#kn(C, is the velocity of the Stoneley wave in a stress-free body). For the materials
combination of the alloy AMG-6 (p = 2.63.10° kg/m3, A = 49.6 -10* Pa , p = 248.10° Pa) is steel
45Gl7IU3 (p’ = 7.54.10% kg/m3 , A = 178.0-10° Pa, n’ = 63.8.10" Pa) k = —0.088 (—0,5-1072 g n < 0.5-10°8% and for
the combination of the alloy AMG-6 is steel 09G2S (p' = 7.795.10% kg/m3 y A =90.75.10* Pa , u’ = 75.95.
10° Pa) k= — 0.0714 (—3.5.107%  n < 3.5.10™%).

2°, Consider the case when the materials occupying the half-spaces are described by the
Murnaghan potential /7/

@° = A4 + pdy° + Yyad,°% — bA°4y° + Ygedy (3.6)

Here g¢,b and ¢ are the third order elastic constants and 4;(i=1,2,3) are the algebraic in-
variants of the Green's deformation tensor., We shall limit ourselves to the linear approxima-
tion /1/. 1In this case we assume that of = 03" = p° and determine the quantities (3.3) using
the formulas

g =M 7T Yae) Oyt — 0 A Y, (W7 g — DA (3.7)
d=( +2p) (W) + (@20 + 46 4+ ) P =) + (@ + )%
B2 = DI (WL, Ko =30 + 2p, AP =1 — Ko, Ay = 1+ 2Kt (M + w)

. . . o
The results of the computations for the same materials combinations as used in example 1

show that 7 depends linearly on n. For the combination of the alloy AMG-6 (s = 30.2.10% Pa,
b = —4.8-101 pa, ¢ = —28.6.10" Pa) is steel 45G1l7IU3 (a’ = 60.1.10% Pa kb’ = —21.1.10¥ Pa, ¢’ = —33.5.10%
Pa)k = —0.185 and for the combination alloy AMG-6 is steel 09G2S (2’ = —25.5-10% Pa, b = —20.6 40! Pa,
¢ = ~46.45-10"% Pa) k = --0.01.

Waves at the boundary between a liquid and an elastic half-space. We con-
sider the case when the initial state of stress is described by the expressions (3.1). 1In
this case the characteristic equation (2.9) assumes the form

(2 — /)Py —- pr2By/(p’ mg®) — 4fByBafy = U (3.8)

30. Using the framework of the theory of finite initial deformations, we consider a
problem for an elastic half-space with a harmonic-type potential. The gquantities appearing
in (3.8) are given by the relations (3.5). Equation (3.8) was solved numerically using the
following parameters /8/: = 2.857.r = 1.176, pip’ = 0.5. The analysis of the solution shows the
linear dependence of n on »n k= —0.12(-0.002  n < 0.002).
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The results obtained make it possible to establish the character of the influence of the
initial stresses on the Stoneley waves propagating along the boundary separating two elastic
bodies or a liquid and an elastic body. The influence consists of the fact that the velocity
of the Stoneley wave increases (decreases) if one of the elastic spaces is comparessed (stret-
ched) in the direction perpendicular to the direction of the wave propagation. The wave vel-
ocity depends on the initial stresses in a linear manner.

Analysing the computational results we find, that in contrast to the case of waves in an
unbounded isotropic body, the choice of the form of the elastic potential does not influence
the character of the dependence of the velocity of the Stoneley waves on the initial stresses.
In both cases the velocity increases under compression and decreases under tension.

In conclusion we note that certain results concerning waves at the boundary separating
prestressed bodies are given in /9,10/.
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